• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    High molecular sieve loading mixed matrix membranes for gas separations

    Thumbnail
    View/Open
    adams_ryan_t_201005_phd.pdf (40.43Mb)
    Date
    2010-01-13
    Author
    Adams, Ryan Thomas
    Metadata
    Show full item record
    Abstract
    Traditional gas separation technologies are thermally-driven and can have adverse environmental and economic impacts. Gas separation membrane processes are not thermally-driven and have low capital and operational costs which make them attractive alternatives to traditional technologies. Polymers are easily processed into large, defect-free membrane modules which have made polymeric membranes the industrial standard; however, polymers show separation efficiency-productivity trade-offs and are often not thermally or chemically robust. Molecular sieves, such as zeolites, have gas separation properties that exceed polymeric materials and are more thermally and chemically robust. Unfortunately, formation of large, defect-free molecular sieve membranes is not economically feasible. Mixed matrix membranes (MMMs) combine the ease of processing polymeric materials with the superior transport properties of molecular sieves by dispersing molecular sieve particles in polymer matrices to enhance the performance of the polymers. MMMs with high molecular sieve loadings were made using polyvinyl acetate (PVAc) and various molecular sieves. Successful formation of these MMMs required substantial modifications to low loading MMM formation techniques. The gas separation properties of these MMMs show significant improvements over PVAc properties, especially for high pressure mixed carbon dioxide-methane feeds that are of great industrial relevance.
    URI
    http://hdl.handle.net/1853/39470
    Collections
    • Georgia Tech Theses and Dissertations [23878]
    • School of Chemical and Biomolecular Engineering Theses and Dissertations [1516]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology