• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Non-thermal processes on ice and liquid micro-jet surfaces

    Thumbnail
    View/Open
    olanrewaju_babajide_o_201105_phd.pdf (18.72Mb)
    Date
    2011-01-19
    Author
    Olanrewaju, Babajide O.
    Metadata
    Show full item record
    Abstract
    Processes at the air-water/ice interface are known to play a very important role in the release of reactive halogen species with atmospheric aerosols serving as catalysts. The ability to make different types of ice with various morphologies, hence, different adsorption and surface properties in vacuum, provide a useful way to probe the catalytic effect of ice in atmospheric reactions. Also, the use of the liquid jet technique provides the rare opportunity to probe liquid samples at the interface; hitherto impossible to investigate with traditional surface science techniques. Studies of reactions on both ice and liquid surfaces at ambient conditions are usually complicated by the rapid desorption and adsorption processes due to the high evaporation rates at the surface. To gain a better understanding and improve modeling of several atmospheric relevant reactions, it is therefore important to develop laboratory techniques that provide an opportunity to investigate non-thermal reactions on both ice and liquid surfaces. Detailed investigation of the interactions of atmospheric relevant molecules (methyl iodide and hydrogen chloride) on water ice at low temperature in UHV conditions has been carried out. These interactions were studied using different techniques such as temperature programmed desorption (TPD), electron stimulated desorption (ESD) and resonance enhanced multiphoton ionization (REMPI). Unlike probing reactions on ice surfaces, investigating air/liquid interfaces present several challenges. This is because traditional surface science techniques require an ultra high vacuum environment to prevent distortion of information due to interference from equilibrium vapor above the liquid surface during data acquisition. The liquid jet technique facilitates the direct study of continually renewed liquid surfaces in high vacuum, thereby preventing the constant changing of the properties and composition of the liquid surface due to the aging process (diffusion of impurities or liquid constituent). A linear time-of-flight mass spectrometer has been used to monitor ion ejection during laser irradiation of liquid jet containing aqueous solutions and pure water. Since these ions are ejected exclusively from the surface of the liquid and the cluster distributions observed are influenced by the local structure, these experiments provide a sensitive probe of the liquid vacuum interface of these solutions. Though the research is fundamental, the results obtained from these investigations indicate how the discontinuity of bulk properties on the surface of both ice and aqueous solutions affects interfacial reactions.
    URI
    http://hdl.handle.net/1853/39475
    Collections
    • Georgia Tech Theses and Dissertations [23878]
    • School of Chemistry and Biochemistry Theses and Dissertations [1525]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology