• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Aortic valve mechanobiology - the effect of cyclic stretch

    Thumbnail
    View/Open
    balachandran_kartik_201005_phd.pdf (7.006Mb)
    Date
    2010-01-15
    Author
    Balachandran, Kartik
    Metadata
    Show full item record
    Abstract
    Aortic valve disease is among the third most common cardiovascular disease worldwide, and is also a strong predictor for other cardiac related deaths. Altered mechanical forces are believed to cause changes in aortic valve biosynthetic activity, eventually leading to valve disease, however little is known about the cellular and molecular events involved in these processes. To gain a fundamental understanding into aortic valve disease mechanobiology, an ex vivo experimental model was used to study the effects of normal and elevated cyclic stretch on aortic valve remodeling and degenerative disease. The hypothesis of this proposal was that elevated cyclic stretch will result in increased expression of markers related to degenerative valve disease. Three aspects of aortic valve disease were studied: (i) Altered extracellular matrix remodeling; (ii) Aortic Valve Calcification; and (iii) Serotonin-induced valvulopathy. Results showed that elevated stretch resulted in increased matrix remodeling and calcification via a bone morphogenic protein-dependent pathway. In addition, elevated stretch and serotonin resulted in increased collagen biosynthesis and tissue stiffness via a serotonin-2A receptor-mediated pathway. This work adds to current knowledge on aortic valve disease mechanisms, and could pave the way for the development of novel treatments for valve disease and for the design of tissue engineered valve constructs.
    URI
    http://hdl.handle.net/1853/39486
    Collections
    • Department of Biomedical Engineering Theses and Dissertations [575]
    • Georgia Tech Theses and Dissertations [23878]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology