• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Materials selection and evaluation of Cu-W particulate composites for extreme electrical contacts

    Thumbnail
    View/Open
    watkins__bobby_g_201105_phd.pdf (8.795Mb)
    Date
    2011-01-21
    Author
    Watkins, Bobby Gene, II
    Metadata
    Show full item record
    Abstract
    Materials for extreme electrical contacts need to have high electrical conductivity coupled with good structural properties. Potential applications include motor contacts, high power switches, and the components of electromagnetic launch (EML) systems. In particular, the lack of durability of these materials in rail components limits practical EML implementation. These rails experience significant amounts of Joule heating, due to extreme current densities, and subsequent thermally-assisted wear. New more durable materials solutions are needed for these components. A systematic materials selection study was executed to identify and compare candidate materials solutions. Several possible candidate non-dominated materials as well as hybrid materials that could potential fill the "white spaces" on the Ashby charts were identified. A couple potential candidate materials were obtained and evaluated. These included copper-tungsten W-Cu, "self-lubricating" graphite-impregnated Cu, and Gr-W-Cu composites with different volume fractions of the constituents. The structure-property relations were determined through mechanical and electrical resistivity testing. A unique test protocol for exposing mechanical test specimens to extreme current densities up to 1.2 GA/m2 was developed and used to evaluate these candidate materials. The systematic design of multi-functional materials for these extreme electrical contacts requires more than an empirical approach. Without a good understanding of both the tribological and structural performance, the optimization of the microstructure will not be quickly realized. By using micromechanics modeling and other materials design modeling tools coupled with systematic mechanical and tribological experiments, the design of materials for these applications can potentially be accelerated. In addition, using these tools, more complex functionally-graded materials tailored to the application can be systematically designed. In this study, physics- and micromechanics-based models were used to correlate properties to the volume fraction of the constituents of the evaluated candidate materials. Properties correlated included density, elastic modulus, hardness, strength, and electrical resistivity of the W-Cu materials.
    URI
    http://hdl.handle.net/1853/39494
    Collections
    • Georgia Tech Theses and Dissertations [23878]
    • School of Mechanical Engineering Theses and Dissertations [4087]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology