Show simple item record

dc.contributor.authorReguera Rodriguez, Maria del Carmenen_US
dc.date.accessioned2011-07-06T16:42:01Z
dc.date.available2011-07-06T16:42:01Z
dc.date.issued2011-03-18en_US
dc.identifier.urihttp://hdl.handle.net/1853/39522
dc.description.abstractThe thesis provides answers, in one case partial and in the other final, to two conjectures in the area of weighted inequalities for Singular Integral Operators. We study the mapping properties of these operators in weighted Lebesgue spaces with weight w. The novelty of this thesis resides in proving sharp dependence of the operator norm on the Muckenhoupt constant associated to the weigth w for a rich class of Singular Integral operators. The thesis also addresses the end point case p=1, providing counterexamples for the dyadic and continuous settings.en_US
dc.publisherGeorgia Institute of Technologyen_US
dc.subjectSingular integralsen_US
dc.subjectA p weightsen_US
dc.subjectCalderon-Zygmund operatorsen_US
dc.subjectMuckenhoupt-Wheeden conjectureen_US
dc.subjectA 2 conjectureen_US
dc.subjectSharp estimatesen_US
dc.subject.lcshIntegral operators
dc.subject.lcshPrediction (Logic)
dc.titleSharp weighted estimates for singular integral operatorsen_US
dc.typeDissertationen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMathematicsen_US
dc.description.advisorCommittee Chair: Lacey, Michael T.; Committee Member: Geronimo, Jeffrey S.; Committee Member: Lubinsky, Doron S.; Committee Member: Uriarte Tuero, Ignacio; Committee Member: Wick, Brett D.en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record