• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    CUDA performance analyzer

    Thumbnail
    View/Open
    dasgupta_aniruddha_s_201105_mast.pdf (3.049Mb)
    Date
    2011-04-05
    Author
    Dasgupta, Aniruddha
    Metadata
    Show full item record
    Abstract
    GPGPU Computing using CUDA is rapidly gaining ground today. GPGPU has been brought to the masses through the ease of use of CUDA and ubiquity of graphics cards supporting the same. Although CUDA has a low learning curve for programmers familiar with standard programming languages like C, extracting optimum performance from it, through optimizations and hand tuning is not a trivial task. This is because, in case of GPGPU, an optimization strategy rarely affects the functioning in an isolated manner. Many optimizations affect different aspects for better or worse, establishing a tradeoff situation between them, which needs to be carefully handled to achieve good performance. Thus optimizing an application for CUDA is tough and the performance gain might not be commensurate to the coding effort put in. I propose to simplify the process of optimizing CUDA programs using a CUDA Performance Analyzer. The analyzer is based on analytical modeling of CUDA compatible GPUs. The model characterizes the different aspects of GPU compute unified architecture and can make prediction about expected performance of a CUDA program. It would also give an insight into the performance bottlenecks of the CUDA implementation. This would hint towards, what optimizations need to be applied to improve performance. Based on the model, one would also be able to make a prediction about the performance of the application if the optimizations are applied to the CUDA implementation. This enables a CUDA programmer to test out different optimization strategies without putting in a lot of coding effort.
    URI
    http://hdl.handle.net/1853/39555
    Collections
    • Georgia Tech Theses and Dissertations [23878]
    • School of Electrical and Computer Engineering Theses and Dissertations [3381]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology