• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Substrate effects from force chain dynamics in dense granular flows

    Thumbnail
    View/Open
    estep_joseph_j_201105_mast.pdf (2.825Mb)
    Date
    2011-04-05
    Author
    Estep, Joseph Jeremiah
    Metadata
    Show full item record
    Abstract
    Granular materials are composed of solid, discrete particles and exhibit mechanical behavior that differs from those of fluids and solids. The rheology of granular flows is principal to a suite of natural hazards. Laboratory experiments and numerical models have adequately reproduced several features observed in terrestrial gravity driven geophysical flows; however, quantitative comparison to field observations exposes a failure to explain the high mobility and duration of many of these flows. The ability of a granular material to resist deformation is a function of the force chain network inherent to the material. This investigation addresses the evolutionary character of force chains in unconfined, two-dimensional, gravity driven granular flows. Our particular emphasis concerns the effects of stress localization on the substrate by dynamic force chain evolution and the implications for bed erosion in dense granular flows. Experimental systems employing photoelastic techniques provide an avenue for quantitative force analysis via image processing and provide dataset that can be used validate discrete element modeling approaches. We show that force chains cause extreme bed force localization throughout dynamic granular systems in spatial and temporal space; and that these localized forces can propagate extensively into the substrate, even ahead of the flow front.
    URI
    http://hdl.handle.net/1853/39583
    Collections
    • Georgia Tech Theses and Dissertations [23878]
    • School of Earth and Atmospheric Sciences Theses and Dissertations [543]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology