• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Integrated approach towards understanding interactions of mineral dust aerosol with warm clouds

    Thumbnail
    View/Open
    kumar_prashant_201105_phd.pdf (4.855Mb)
    Date
    2011-04-04
    Author
    Kumar, Prashant
    Metadata
    Show full item record
    Abstract
    Mineral dust is ubiquitous in the atmosphere and represents a dominant type of particulate matter by mass. Despite its well-recognized importance, assessments of dust impacts on clouds and climate remain highly uncertain. This thesis addresses the role of dust as cloud condensation nuclei (CCN) and giant CCN (GCCN) with the goal of improving our understanding of dust-warm cloud interactions and their representation in climate models. We investigate the CCN-relevant properties of mineral dust samples representative of major regional dust sources experimentally in the laboratory conditions to determine their respective affinity to water. Based on the experimental exponent derived from the dependence of critical supersaturation with particle dry diameter, we determine the dominant physics of activation (i.e., adsorption activation theory (AT) or traditional Köhler theory (KT)) for dust particles from different global regions. Results from experimental measurements are used to support the development of a new parameterization of cloud droplet formation from dust CCN for climate models based on adsorption activation mechanism. The potential role of dust GCCN activating by AT within warm stratocumulus and convective clouds is also evaluated.
    URI
    http://hdl.handle.net/1853/39596
    Collections
    • Georgia Tech Theses and Dissertations [23878]
    • School of Chemical and Biomolecular Engineering Theses and Dissertations [1516]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology