• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Non-Newtonian fluid injection into granular media

    Thumbnail
    View/Open
    Callahan_Thomas_P_201105_mast.pdf (3.259Mb)
    Date
    2011-04-05
    Author
    Callahan, Thomas Patrick
    Metadata
    Show full item record
    Abstract
    The process of fluid injection into granular media is relevant to a wide number of applications such as enhanced oil recovery, grouting, and the construction of permeable reactive barriers. The response of the subsurface is dependent on multiple factors such as in-situ stresses, fluid properties, flow rate, and formation type. Based on these conditions a variety of response mechanisms can be initiated ranging from simple porous infiltration to hydraulic fracturing. Currently, the mechanics of fluid injection into competent rock are well understood and can be sufficiently modeled using linear elastic fracture mechanics. Because the grains in rock formations are individually cemented together, they exhibit cohesion and are able to support tensile stresses. The linear elastic method assumes tensile failure due to stress concentrations at the fracture tip. A fracture propagates when the stress intensity factor exceeds the material toughness (Detournay, 1988) However, understanding fluid injection in cohesionless granular media presents a much larger obstacle. Currently, no theoretical models have been developed to deal with granular media displacements due to fluid injection. Difficulty arises from the complexity of fluid rheology and composition used in engineering processes, the strong coupling between fluid flow and mechanical deformation, the non-linear response of subsurface media, and the multi-scale nature of the problem. The structure of this thesis is intended to first give the reader a basic background of some of the fundamental concepts for non-Newtonian fluid flow in granular media. Fluid properties as well as some interaction mechanisms are described in relation to the injection process. Next, the results from an experimental series of injection tests are presented with a discussion of the failure/flow processes taking place. We developed a novel technique which allows us to visualize the injection process by use of a transparent Hele-Shaw cell. Specifically, we will be using polyacrylamide solutions at a variety of concentrations to study non-Newtonian effects on the response within the Hele-Shaw cell. By performing tests at a range of solution concentrations and injection rates we are to be able to identify a transition from an infiltration dominated flow regime to a fracturing dominated regime.
    URI
    http://hdl.handle.net/1853/39618
    Collections
    • Georgia Tech Theses and Dissertations [23878]
    • School of Civil and Environmental Engineering Theses and Dissertations [1755]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology