• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Geometric statistically based methods for the segmentation and registration of medical imagery

    Thumbnail
    View/Open
    gao_yi_201105_phd.pdf (10.33Mb)
    Date
    2010-12-22
    Author
    Gao, Yi
    Metadata
    Show full item record
    Abstract
    Medical image analysis aims at developing techniques to extract information from medical images. Among its many sub-fields, image registration and segmentation are two important topics. In this report, we present four pieces of work, addressing different problems as well as coupling them into a unified framework of shape based image segmentation. Specifically: 1. We link the image registration with the point set registration, and propose a globally optimal diffeomorphic registration technique for point set registration. 2. We propose an image segmentation technique which incorporates the robust statistics of the image and the multiple contour evolution. Therefore, the method is able to simultaneously extract multiple targets from the image. 3. By combining the image registration, statistical learning, and image segmentation, we perform a shape based method which not only utilizes the image information but also the shape knowledge. 4. A multi-scale shape representation based on the wavelet transformation is proposed. In particular, the shape is represented by wavelet coefficients in a hierarchical way in order to decompose the shape variance in multiple scales. Furthermore, the statistical shape learning and shape based segmentation is performed under such multi-scale shape representation framework.
    URI
    http://hdl.handle.net/1853/39644
    Collections
    • Department of Biomedical Engineering Theses and Dissertations [575]
    • Georgia Tech Theses and Dissertations [23878]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology