• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Reliable and efficient communication in wireless underground sensor networks

    Thumbnail
    View/Open
    sun_zhi_201108_phd.pdf (1.843Mb)
    Date
    2011-06-23
    Author
    Sun, Zhi
    Metadata
    Show full item record
    Abstract
    Wireless Underground Sensor Networks (WUSNs) are the networks of wireless sensors that operate below the ground surface. These sensors are either buried completely in soil medium, or placed within a bounded open underground space, such as underground mines and tunnels. WUSNs enable a wide variety of novel applications, including intelligent irrigation, underground structure monitoring, and border patrol and intruder detection. This thesis is concerned with establishing reliable and efficient communications in the network of wireless sensor nodes that are deployed in either soil medium or underground mines and tunnels. In particular, to realize WUSNs in soil medium, two types of signal propagation techniques including Electromagnetic (EM) waves and Magnetic Induction (MI) are explored. For EM wave-based WUSNs, the heterogeneous network architecture and dynamic connectivity are investigated based on a comprehensive channel model in soil medium. Then a spatio-temporal correlation-based data collection schemes is developed to reduce the sensor density while keeping high monitoring accuracy. For MI-based WUSNs, the MI channel is first analytically characterized. Then based on the MI channel model, the MI waveguide technique is developed in order to enlarge the underground transmission range. Finally, the optimal deployment algorithms for MI waveguides in WUSNs are analyzed to construct the WUSNs with high reliability and low costs. To realize WUSNs in underground mines and tunnels, a mode-based analytical channel model is first proposed to accurately characterize the signal propagation in both empty and obstructed mines and tunnels. Then the Multiple-Input and Multiple-Output (MIMO) system and cooperative communication system are optimized to establish reliable and efficient communications in underground mines and tunnels.
    URI
    http://hdl.handle.net/1853/41150
    Collections
    • Georgia Tech Theses and Dissertations [22398]
    • School of Electrical and Computer Engineering Theses and Dissertations [3127]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology

    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology