dc.contributor.author | Roeselers, Guus | en_US |
dc.contributor.author | Newton, Irene L. G. | en_US |
dc.contributor.author | Woyke, Tanja | en_US |
dc.contributor.author | Dilly, Geoffrey F. | en_US |
dc.contributor.author | Meredith C. Fisher | en_US |
dc.contributor.author | Lau, Evan | en_US |
dc.contributor.author | Richardson, Paul M. | en_US |
dc.contributor.author | Saunders, Elizabeth | en_US |
dc.contributor.author | Wu, Dongying | en_US |
dc.contributor.author | Cavanaugh, Colleen M. | en_US |
dc.contributor.author | Auchtung, Thomas A. | en_US |
dc.contributor.author | Dutton, Rachel J. | en_US |
dc.contributor.author | Fontanez, Kristina M. | en_US |
dc.contributor.author | Stewart, Frank J. | en_US |
dc.contributor.author | Barry, Kerrie W. | en_US |
dc.contributor.author | Detter, John C. | en_US |
dc.contributor.author | Eisen, Jonathan A. | en_US |
dc.date.accessioned | 2012-01-24T14:09:06Z | |
dc.date.available | 2012-01-24T14:09:06Z | |
dc.date.issued | 2010 | |
dc.identifier.citation | Roeselers G, Newton ILG, Woyke T, Auchtung TA, Dilly GF, Dutton RJ, Fisher MC, Fontanez KM, Lau E, Stewart FJ, Richardson P, Barry K, Saunders E, Detter JC, Wu D, Eisen JA, Cavanaugh CM. Complete genome sequence of Candidatus Ruthia magnifica. Standards in Genomic Sciences (2010) 3:163-173. | en_US |
dc.identifier.issn | 1944-3277 | |
dc.identifier.uri | http://hdl.handle.net/1853/42271 | |
dc.description | This work is licensed under a Creative Commons Attribution 3.0 License. | en_US |
dc.description | DOI:10.4056/sigs.1103048 | |
dc.description.abstract | The hydrothermal vent clam Calyptogena magnifica (Bivalvia: Mollusca) is a member of the Vesicomyidae. Species within this family form symbioses with chemosynthetic Gammapro-teobacteria. They exist in environments such as hydrothermal vents and cold seeps and have a rudimentary gut and feeding groove, indicating a large dependence on their endosymbionts for nutrition. The C. magnifica symbiont, Candidatus Ruthia magnifica, was the first intracel-lular sulfur-oxidizing endosymbiont to have its genome sequenced (Newton et al. 2007). Here we expand upon the original report and provide additional details complying with the emerging MIGS/MIMS standards. The complete genome exposed the genetic blueprint of the metabolic capabilities of the symbiont. Genes which were predicted to encode the proteins required for all the metabolic pathways typical of free-living chemoautotrophs were detected in the symbiont genome. These include major pathways including carbon fixation, sulfur oxi-dation, nitrogen assimilation, as well as amino acid and cofactor/vitamin biosynthesis. This genome sequence is invaluable in the study of these enigmatic associations and provides in-sights into the origin and evolution of autotrophic endosymbiosis. | en_US |
dc.language.iso | en_US | en |
dc.publisher | Georgia Institute of Technology | en_US |
dc.subject | Hydrothermal vent | en_US |
dc.subject | Clam | en_US |
dc.subject | Sulfur | en_US |
dc.subject | Symbiosis | en_US |
dc.subject | Chemosynthesis | en_US |
dc.subject | Vesicomyidae | en_US |
dc.title | Complete genome sequence of Candidatus Ruthia magnifica | en_US |
dc.type | Article | en_US |
dc.contributor.corporatename | Harvard University. Dept. of Organismic and Evolutionary Biology | en_US |
dc.contributor.corporatename | Radboud Universiteit Nijmegen. Dept. of Microbiology | en_US |
dc.contributor.corporatename | Wellesley College. Dept. of Biological Sciences | en_US |
dc.contributor.corporatename | Joint Genome Institute | en_US |
dc.contributor.corporatename | United States. Dept. of Energy | en_US |
dc.contributor.corporatename | Harvard Medical School. Dept. of Microbiology and Molecular Genetics | en_US |
dc.contributor.corporatename | UC Davis Genome Center | en_US |
dc.publisher.original | Genomic Standards Consortium | en_US |
dc.identifier.doi | 10.4056/sigs.1103048 | |