• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Construction and adaptation of AI behaviors in computer games

    Thumbnail
    View/Open
    mehta_manish_201112_phd.pdf (10.77Mb)
    Date
    2011-08-19
    Author
    Mehta, Manish
    Metadata
    Show full item record
    Abstract
    Computer games are an increasingly popular application for Artificial Intelligence (AI) research, and conversely AI is an increasingly popular selling point for commercial digital games. AI for non playing characters (NPC) in computer games tends to come from people with computing skills well beyond the average user. The prime reason behind the lack of involvement of novice users in creating AI behaviors for NPC's in computer games is that construction of high quality AI behaviors is a hard problem. There are two reasons for it. First, creating a set of AI behavior requires specialized skills in design and programming. The nature of the process restricts it to certain individuals who have a certain expertise in this area. There is little understanding of how the behavior authoring process can be simplified with easy-to-use authoring environments so that novice users (without programming and design experience) can carry out the behavior authoring task. Second, the constructed AI behaviors have problems and bugs in them which cause a break in player expe- rience when the problematic behaviors repeatedly fail. It is harder for novice users to identify, modify and correct problems with the authored behavior sets as they do not have the necessary debugging and design experience. The two issues give rise to a couple of interesting questions that need to be investigated: a) How can the AI behavior construction process be simplified so that a novice user (without program- ming and design experience) can easily conduct the authoring activity and b) How can the novice users be supported to help them identify and correct problems with the authored behavior sets? In this thesis, I explore the issues related to the problems highlighted and propose a solution to them within an application domain, named Second Mind(SM). In SM novice users who do not have expertise in computer programming employ an authoring interface to design behaviors for intelligent virtual characters performing a service in a virtual world. These services range from shopkeepers to museum hosts. The constructed behaviors are further repaired using an AI based approach. To evaluate the construction and repair approach, we conduct experiments with human subjects. Based on developing and evaluating the solution, I claim that a design solution with behavior timeline based interaction design approach for behavior construction supported by an understandable vocabulary and reduced feature representation for- malism enables novice users to author AI behaviors in an easy and understandable manner for NPCs performing a service in a virtual world. I further claim that an introspective reasoning approach based on comparison of successful and unsuccessful execution traces can be used as a means to successfully identify breaks in player ex- perience and modify the failures to improve the experience of the player interacting with NPCs performing a service in a virtual world. The work contributes in the following three ways by providing: 1) a novel introspective reasoning approach for successfully detecting and repairing failures in AI behaviors for NPCs performing a service in a virtual world.; 2) a novice user understandable authoring environment to help them create AI behaviors for NPCs performing a service in a virtual world in an easy and understandable manner; and 3) Design, debugging and testing scaffolding to help novice users modify their authored AI behaviors and achieve higher quality modified AI behaviors compared to their original unmodified behaviors.
    URI
    http://hdl.handle.net/1853/42724
    Collections
    • College of Computing Theses and Dissertations [1191]
    • Georgia Tech Theses and Dissertations [23877]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology