• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A data analytics approach to gas turbine prognostics and health management

    Thumbnail
    View/Open
    diallo_ousmane_n_201012_phd.pdf (3.104Mb)
    Date
    2010-11-19
    Author
    Diallo, Ousmane Nasr
    Metadata
    Show full item record
    Abstract
    As a consequence of the recent deregulation in the electrical power production industry, there has been a shift in the traditional ownership of power plants and the way they are operated. To hedge their business risks, the many new private entrepreneurs enter into long-term service agreement (LTSA) with third parties for their operation and maintenance activities. As the major LTSA providers, original equipment manufacturers have invested huge amounts of money to develop preventive maintenance strategies to minimize the occurrence of costly unplanned outages resulting from failures of the equipments covered under LTSA contracts. As a matter of fact, a recent study by the Electric Power Research Institute estimates the cost benefit of preventing a failure of a General Electric 7FA or 9FA technology compressor at $10 to $20 million. Therefore, in this dissertation, a two-phase data analytics approach is proposed to use the existing monitoring gas path and vibration sensors data to first develop a proactive strategy that systematically detects and validates catastrophic failure precursors so as to avoid the failure; and secondly to estimate the residual time to failure of the unhealthy items. For the first part of this work, the time-frequency technique of the wavelet packet transforms is used to de-noise the noisy sensor data. Next, the time-series signal of each sensor is decomposed to perform a multi-resolution analysis to extract its features. After that, the probabilistic principal component analysis is applied as a data fusion technique to reduce the number of the potentially correlated multi-sensors measurement into a few uncorrelated principal components. The last step of the failure precursor detection methodology, the anomaly detection decision, is in itself a multi-stage process. The obtained principal components from the data fusion step are first combined into a one-dimensional reconstructed signal representing the overall health assessment of the monitored systems. Then, two damage indicators of the reconstructed signal are defined and monitored for defect using a statistical process control approach. Finally, the Bayesian evaluation method for hypothesis testing is applied to a computed threshold to test for deviations from the healthy band. To model the residual time to failure, the anomaly severity index and the anomaly duration index are defined as defects characteristics. Two modeling techniques are investigated for the prognostication of the survival time after an anomaly is detected: the deterministic regression approach, and parametric approximation of the non-parametric Kaplan-Meier plot estimator. It is established that the deterministic regression provides poor prediction estimation. The non parametric survival data analysis technique of the Kaplan-Meier estimator provides the empirical survivor function of the data set comprised of both non-censored and right censored data. Though powerful because no a-priori predefined lifetime distribution is made, the Kaplan-Meier result lacks the flexibility to be transplanted to other units of a given fleet. The parametric analysis of survival data is performed with two popular failure analysis distributions: the exponential distribution and the Weibull distribution. The conclusion from the parametric analysis of the Kaplan-Meier plot is that the larger the data set, the more accurate is the prognostication ability of the residual time to failure model.
    URI
    http://hdl.handle.net/1853/42845
    Collections
    • Aerospace Systems Design Laboratory Theses and Dissertations [198]
    • Georgia Tech Theses and Dissertations [22401]
    • School of Aerospace Engineering Theses and Dissertations [1342]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology