• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Empirical likelihood and extremes

    Thumbnail
    View/Open
    gong_yun_201205_phd.pdf (1.092Mb)
    Date
    2012-01-17
    Author
    Gong, Yun
    Metadata
    Show full item record
    Abstract
    In 1988, Owen introduced empirical likelihood as a nonparametric method for constructing confidence intervals and regions. Since then, empirical likelihood has been studied extensively in the literature due to its generality and effectiveness. It is well known that empirical likelihood has several attractive advantages comparing to its competitors such as bootstrap: determining the shape of confidence regions automatically using only the data; straightforwardly incorporating side information expressed through constraints; being Bartlett correctable. The main part of this thesis extends the empirical likelihood method to several interesting and important statistical inference situations. This thesis has four components. The first component (Chapter II) proposes a smoothed jackknife empirical likelihood method to construct confidence intervals for the receiver operating characteristic (ROC) curve in order to overcome the computational difficulty when we have nonlinear constrains in the maximization problem. The second component (Chapter III and IV) proposes smoothed empirical likelihood methods to obtain interval estimation for the conditional Value-at-Risk with the volatility model being an ARCH/GARCH model and a nonparametric regression respectively, which have applications in financial risk management. The third component(Chapter V) derives the empirical likelihood for the intermediate quantiles, which plays an important role in the statistics of extremes. Finally, the fourth component (Chapter VI and VII) presents two additional results: in Chapter VI, we present an interesting result by showing that, when the third moment is infinity, we may prefer the Student's t-statistic to the sample mean standardized by the true standard deviation; in Chapter VII, we present a method for testing a subset of parameters for a given parametric model of stationary processes.
    URI
    http://hdl.handle.net/1853/43581
    Collections
    • Georgia Tech Theses and Dissertations [23878]
    • School of Mathematics Theses and Dissertations [440]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology