• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Surfactants in nonpolar oils: agents of electric charging and nanogel templates

    Thumbnail
    View/Open
    guo_qiong_201205_phd.pdf (2.185Mb)
    Date
    2012-03-27
    Author
    Guo, Qiong
    Metadata
    Show full item record
    Abstract
    This thesis studies the formation of mobile and surface-bound electric charges in nonpolar liquids. Unlike aqueous media with their natural abundance of charged species, liquids of low dielectric constant do not readily accommodate charges, but can do so in the presence of certain surfactant additives. Surfactant-mediated charging in nonpolar oils has long been exploited industrially, but the underlying charging mechanisms are far from understood. The present work seeks clarification by comparing the effect of ionic and nonionic surfactants on the conductivity of nonpolar solutions and the electrophoretically observable surface charge of suspended polymer particles. Both types of surfactant are found to generate mobile ions in solution as well as particle charge; and in the more surprising case of nonionic surfactants, the occurrence of particle charge and screening ions is confirmed independently by measurements of the electrostatic particle interaction energy. A systematic variation of the particle material and functionalization, the residual water content, and the surfactant concentration above and below the critical micelle concentration provides insights about the possible charging pathways. Reverse surfactant micelles are explored not only as charging agents, but also as reactors and templates for the synthesis of novel nanogels with promise for drug delivery. Synthesis via copper-free Click chemistry is shown to allow for better control of the particle size than a more conventional polymerization scheme, while avoiding metal catalysts and free radicals that are considered hazardous for most biomedical applications.
    URI
    http://hdl.handle.net/1853/43622
    Collections
    • Georgia Tech Theses and Dissertations [22398]
    • School of Chemical and Biomolecular Engineering Theses and Dissertations [1438]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology

    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology