• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Inorganic polyphosphate in the marine environment: field observations and new analytical techniques

    Thumbnail
    View/Open
    diaz_julia_m_201105_phd.pdf (13.44Mb)
    diaz_julia_m_201105_phd_appendix_a.pdf (327.5Kb)
    Date
    2011-03-31
    Author
    Diaz, Julia M.
    Metadata
    Show full item record
    Abstract
    Phosphorus (P) is a requirement for biological growth, but this vital nutrient is present at low or limiting concentrations across vast areas of the global surface ocean. Inorganic polyphosphate (poly-P), a linear polymer of at least three orthophosphate units, is one component of the marine P cycle that has been relatively overlooked as compared to other P species, owing in part to a lack of routine analytical techniques that cleanly evaluate it within samples. This thesis demonstrates that inorganic poly-P is a quantitatively significant and dynamic component of the global marine P cycle while also establishing two new techniques for its analysis in biological and environmental samples. In Chapter 2, experiments using the freshwater algae Chlamydomonas sp. and Chlorella sp. illustrate X-ray fluorescence spectromicroscopy as a powerful tool for the sub-micron scale assessment of poly-P composition in organisms. This method enabled the discovery, detailed in Chapter 3, of a mechanism for the long-term sequestration of the vital nutrient P from marine systems via the initial formation of poly-P in surface waters and its eventual transformation into the mineral apatite within sediments. The importance of marine poly-P is furthermore established in Chapter 3 by observations showing that naturally-occurring poly-P represents 7-11% of total P in particles and dissolved matter in Effingham Inlet, a eutrophic fjord located on Vancouver Island, British Columbia. In Chapter 4, a new fluorometric protocol based on the interaction of inorganic poly-P with 4',6-diamidino-2-phenylindole (DAPI) is established as a technique for the direct quantification of poly-P in environmental samples. Chapter 5 presents work from Effingham Inlet utilizing this method that show that inorganic poly-P plays a significant role in the redox-sensitive cycling of P in natural systems.
    URI
    http://hdl.handle.net/1853/43673
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Earth and Atmospheric Sciences Theses and Dissertations [543]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology