• Login
    View Item 
    •   SMARTech Home
    • Undergraduate Research Opportunities Program (UROP)
    • Undergraduate Research Option Theses
    • View Item
    •   SMARTech Home
    • Undergraduate Research Opportunities Program (UROP)
    • Undergraduate Research Option Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Measuring present-day strain rates along the Fish Lake Valley fault system, Pacific-North America plate boundary

    Thumbnail
    View/Open
    Johnson_052012_Thesis.pdf (1.693Mb)
    Date
    2012-05-07
    Author
    Johnson, Christopher William
    Metadata
    Show full item record
    Abstract
    The eastern California shear zone (ECSZ) is located east of the San Andreas fault and contains a complex network of structures that accommodate ~25% of the relative displacement between the Pacific and North American plates. Geodetic data indicate strain accumulation at a rate of 12±2 mm/yr along four main structures in the ECSZ. The Death Valley-Fish Lake Valley fault, the prominent and longest fault in the ECSZ at ~300km, is observed to be the fastest slipping fault in the region storing elastic strain at a rate of 3-8 mm/yr. Recently determined long-term slip rates (103 106 year timescale) indicate a pattern of decreasing velocity moving north through Fish Lake Valley (FLV) from ~6 mm/yr to zero, presumably because strain is transferred onto extensional faults located to the east. This study intends to determine the short-term (decadal timescale) displacement field along the FLV fault using Global Positioning System (GPS) derived velocities to test whether spatial patterns of geodetic and geologic rates are consistent through time. In a series of two GPS campaigns in 2010 and 2011, nine geodetic monuments, spaced 15-20 km apart, were surveyed in and around FLV. In addition, campaign data from previous surveys has been acquired from UNAVCO. The combined data sets are used to calculate the relative motion along the fault. Modern strain rates determined using an elastic half space model resulted in a slip rate of ~3.8 mm/yr across the FLV fault. This rate is examined with respect to previously determined Quaternary rates along the FLV fault
    URI
    http://hdl.handle.net/1853/43765
    Collections
    • School of Earth and Atmospheric Sciences Undergraduate Research Option Theses [12]
    • Undergraduate Research Option Theses [862]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology