• Login
    View Item 
    •   SMARTech Home
    • Institute for Robotics and Intelligent Machines (IRIM)
    • IRIM Articles and Papers
    • Complex Rheology and Biomechanics Lab (CRAB LAB)
    • View Item
    •   SMARTech Home
    • Institute for Robotics and Intelligent Machines (IRIM)
    • IRIM Articles and Papers
    • Complex Rheology and Biomechanics Lab (CRAB LAB)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Biophysically inspired development of a sand-swimming robot

    Thumbnail
    View/Open
    RSS_01.pdf (7.089Mb)
    Date
    2011
    Author
    Maladen, Ryan D.
    Ding, Yang
    Umbanhowar, Paul B.
    Kamor, Adam
    Goldman, Daniel I.
    Metadata
    Show full item record
    Abstract
    Previous study of a sand-swimming lizard, the sandfish, Scincus scincus, revealed that the animal swims within granular media at speeds up to 0:4 body-lengths/cycle using body undulation (approximately a single period sinusoidal traveling wave) without limb use [1]. Inspired by this biological experiment and challenged by the absence of robotic devices with comparable subterranean locomotor abilities, we developed a numerical simulation of a robot swimming in a granular medium (modeled using a multi-particle discrete element method simulation) to guide the design of a physical sand-swimming device built with off-the-shelf servo motors. Both in simulation and experiment the robot swims limblessly subsurface and, like the animal, increases its speed by increasing its oscillation frequency. It was able to achieve speeds of up to 0:3 body-lengths/cycle. The performance of the robot measured in terms of its wave efficiency, the ratio of its forward speed to wave speed, was 0:34 0:02, within 8 % of the simulation prediction. Our work provides a validated simulation tool and a functional initial design for the development of robots that can move within yielding terrestrial substrates.
    URI
    http://hdl.handle.net/1853/44542
    Collections
    • Complex Rheology and Biomechanics Lab (CRAB LAB) [37]
    • Complex Rheology and Biomechanics Lab (CRAB LAB) Publications [37]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology