• Login
    View Item 
    •   SMARTech Home
    • Institute for Robotics and Intelligent Machines (IRIM)
    • IRIM Articles and Papers
    • Complex Rheology and Biomechanics Lab (CRAB LAB)
    • View Item
    •   SMARTech Home
    • Institute for Robotics and Intelligent Machines (IRIM)
    • IRIM Articles and Papers
    • Complex Rheology and Biomechanics Lab (CRAB LAB)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Integrating a Hierarchy of Simulation Tools for Legged Robot Locomotion

    Thumbnail
    View/Open
    iros-workshop_submit.pdf (633.5Kb)
    Date
    2008-09
    Author
    Slatton, Andrew
    Cohen, Daniel
    Ding, Yang
    Umbanhowar, Paul B.
    Goldman, Daniel I.
    Haynes, G. Clark
    Komsuoglu, Haldun
    Koditschek, Daniel E.
    Metadata
    Show full item record
    Abstract
    We are interested in the development of a variety of legged robot platforms intended for operation in unstructured outdoor terrain. In such settings, the traditions of rational engineering design, driven by analytically informed and computationally assisted studies of robot-environment models, remain ineffective due to the complexity of both the robot designs and the terrain in which they must operate. Instead, empirical trial and error often drives the necessary incremental and iterative design process, hence the development of such robots remains expensive both in time and cost, and is often closely dependent upon the substrate properties of the locomotion terrain. This paper describes a series of concurrent but increasingly coordinated software development efforts that aim to diminish the gap between easily interfaced and physically sound computational models of a real robot’s operation in a complex natural environment. We describe a robot simulation environment in which simple robot modifications can be easily prototyped along and “played” into phenomenological models of contact mechanics. We particularly focus on the daunting but practically compelling example of robot feet interacting granular media, such as gravel or sand, offering a brief report of our progress in deriving and importing physically accurate but computationally tractable phenomenological substrate models into the robot execution simulation environment. With a goal of integration for future robot prototyping simulations, we review the prospects for diminishing the gap between the integrated computational models and the needs of physical platform development.
    URI
    http://hdl.handle.net/1853/44544
    Collections
    • Complex Rheology and Biomechanics Lab (CRAB LAB) [37]
    • Complex Rheology and Biomechanics Lab (CRAB LAB) Publications [37]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology