• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Simultaneous amplification of multiple dna targets with optimized annealing temperatures

    Thumbnail
    View/Open
    pak_nikita_201208_mast.pdf (4.659Mb)
    Date
    2012-07-16
    Author
    Pak, Nikita
    Metadata
    Show full item record
    Abstract
    The polymerase chain reaction (PCR) is an extremely powerful tool for viral detection and screening because it can detect specific infectious agents with great sensitivity and specificity. It works by exponentially amplifying a target viral DNA sequence to high enough concentrations through the use of specific reagents and thermal cycling. It has surpassed culture based methods as the gold standard for viral detection because of the increased speed and sensitivity. Microfluidic approaches to PCR have focused on decreasing the time to thermally cycle, the volumes used for reactions, and they have also added upstream and downstream processes that are of benefit for on-chip viral detection. While these improvements have made great strides over commercially available products in terms of speed, cost, and integration, a major limitation that has yet to be explored is the throughput associated with running PCR. Since each PCR reaction relies on primers with a unique annealing temperature to detect specific viral DNA, only a single virus can be screened for at a time. The device presented here uses two infrared laser diodes that are driven identically by the same laser driver to independently thermally cycle two chambers on the same microfluidic chip. Different temperatures are achieved in the two chambers by modulating the radiation reaching one of those chambers with an optical shutter. Closed loop temperature feedback in both chambers is done with a Labview program and thermocouples embedded in the polymer chip. This allows for accurate temperature measurement without inhibiting the reaction. To demonstrate the capabilities of this device, two different reactions were simultaneously amplified successfully on the same device that have annealing temperatures that differ by 15°C.
    URI
    http://hdl.handle.net/1853/44901
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Mechanical Engineering Theses and Dissertations [4086]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology