• Login
    View Item 
    •   SMARTech Home
    • Center for Organic Photonics and Electronics (COPE)
    • COPE Publications
    • View Item
    •   SMARTech Home
    • Center for Organic Photonics and Electronics (COPE)
    • COPE Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    From Diatom Biomolecules to Bioinspired Syntheses of Silica- and Titania-Based Materials

    Thumbnail
    View/Open
    cope_278.pdf (496.1Kb)
    Date
    2010-02
    Author
    Kröger, Nils
    Sandhage, Kenneth H.
    Metadata
    Show full item record
    Abstract
    Amorphous silica is (next to CaCO₃) the second most abundant biologically produced inorganic material. A certain group of photosynthetic microalgae, called diatoms, forms complex 3D silica architectures (frustules) containing regularly arranged nanoscale features (pores, channels, protuberances). Recently, biomolecules involved in diatom silica formation have been characterized, and first insights into their structure-function correlations have been obtained. This has spurred the development of synthetic (bio)polymers capable of directing the in vitro formation of silica and other inorganic materials from aqueous precursor solutions under mild conditions. Here we present a summary of current insight into the mechanism of silica formation by diatom biomolecules and provide examples of synthetic (bio)polymers for the formation of silica and titania materials with complex structures.
    URI
    http://hdl.handle.net/1853/45240
    Collections
    • COPE Publications [376]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology