• Login
    View Item 
    •   SMARTech Home
    • Center for Organic Photonics and Electronics (COPE)
    • COPE Publications
    • View Item
    •   SMARTech Home
    • Center for Organic Photonics and Electronics (COPE)
    • COPE Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Optimization of anisotropically etched silicon surface-relief gratings for substrate-mode optical interconnects

    Thumbnail
    View/Open
    cope_368.pdf (1.361Mb)
    Date
    2006-01
    Author
    Wu, Shun-Der
    Gaylord, Thomas K.
    Maikisch, Jonathan S.
    Glytsis, Elias N.
    Metadata
    Show full item record
    Abstract
    The optimum profiles of right-angle-face anisotropically etched silicon surface-relief gratings illuminated at normal incidence for substrate-mode optical interconnects are determined for TE, TM, and random linear (RL) polarizations. A simulated annealing algorithm in conjunction with the rigorous coupled-wave analysis is used. The optimum diffraction efficiencies of the −1 forward-diffracted order are 37.3% , 67.1% , and 51.2% for TE-, TM-, and RL-polarization-optimized profiles, respectively. Also, the sensitivities to grating thickness, slant angle, and incident angle of the optimized profiles are presented.
    URI
    http://hdl.handle.net/1853/45419
    Collections
    • COPE Publications [376]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology