• Login
    View Item 
    •   SMARTech Home
    • Center for Organic Photonics and Electronics (COPE)
    • COPE Publications
    • View Item
    •   SMARTech Home
    • Center for Organic Photonics and Electronics (COPE)
    • COPE Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Two-wave-plate compensator method for single-point retardation measurements

    Thumbnail
    View/Open
    cope_375.pdf (1.526Mb)
    Date
    2004-12
    Author
    Montarou, Carole C.
    Gaylord, Thomas K.
    Metadata
    Show full item record
    Abstract
    The two-wave-plate compensator (TWC) technique is introduced for single-point retardation measurements. The TWC method uses a known wave plate together with a wave plate of unknown retardation and produces a linearly polarized output that allows a null of intensity to be detected. The TWC method is compared both theoretically and experimentally with the existing Brace-Köhler and Sénarmont methods. The resolution of the TWC is shown to be 0.02 nm. TWC enables the measurement of a sample retardation with as little as 0.13% error and thus is more accurate than either the Brace-Köhler or the Sénarmont method.
    URI
    http://hdl.handle.net/1853/45423
    Collections
    • COPE Publications [376]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology

    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology