• Login
    View Item 
    •   SMARTech Home
    • Center for Organic Photonics and Electronics (COPE)
    • COPE Publications
    • View Item
    •   SMARTech Home
    • Center for Organic Photonics and Electronics (COPE)
    • COPE Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    General methods for designing single-mode planar photonic crystal waveguides in hexagonal lattice structures

    Thumbnail
    View/Open
    cope_314.pdf (158.6Kb)
    Date
    2003-06
    Author
    Wu, N.
    Javanmard, M.
    Momeni, Babak
    Soltani, Mohammad
    Adibi, Ali
    Xu, Yong
    Lee, Reginald K.
    Metadata
    Show full item record
    Abstract
    We systematically investigate and compare general methods of designing single mode photonic crystal waveguides in a two-dimensional hexagonal lattice of air holes in a dielectric material. We apply the rather general methods to dielectric-core hexagonal lattice photonic crystals since they have not been widely explored before. We show that it is possible to obtain single mode guiding in a limited portion of the photonic bandgap of hexagonal lattice structures. We also compare the potentials of different photonic crystal lattices for designing single-mode waveguides and conclude that triangular lattice structures are the best choice.
    URI
    http://hdl.handle.net/1853/45517
    Collections
    • COPE Publications [376]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology