• Login
    View Item 
    •   SMARTech Home
    • Center for Organic Photonics and Electronics (COPE)
    • COPE Publications
    • View Item
    •   SMARTech Home
    • Center for Organic Photonics and Electronics (COPE)
    • COPE Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Three-beam interference lithography methodology

    Thumbnail
    View/Open
    COPE_152.pdf (907.3Kb)
    Date
    2011-02
    Author
    Stay, Justin L.
    Burrow, Guy M.
    Gaylord, Thomas K.
    Metadata
    Show full item record
    Abstract
    Three-beam interference lithography represents a technology capable of producing two-dimensional periodic structures for applications such as micro- and nanoelectronics, photonic crystal devices, metamaterial devices, biomedical structures, and subwavelength optical elements. In the present work, a systematic methodology for implementing optimized three-beam interference lithography is presented. To demonstrate this methodology, specific design and alignment parameters, along with the range of experimentally feasible lattice constants, are quantified for both hexagonal and square periodic lattice patterns. Using this information, example photonic crystal rodlike structures and hole-like structures are fabricated by appropriately controlling the recording wavevector configuration along with the individual beam amplitudes and polarizations, and by changing between positive- or negative-type photoresists.
    URI
    http://hdl.handle.net/1853/45573
    Collections
    • COPE Publications [376]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology

    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology