• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Energy-efficient digital design of reliable, low-throughput wireless biomedical systems

    Thumbnail
    View/Open
    tolbert_jeremy_r_201212_phd.pdf (4.213Mb)
    Date
    2012-08-24
    Author
    Tolbert, Jeremy Reynard
    Metadata
    Show full item record
    Abstract
    The main objective of this research is to improve the energy efficiency of low throughput wireless biomedical systems by employing digital design techniques. The power consumed in conventional wireless EEG (biomedical) systems is dominated by digital microcontroller and the radio frequency (RF) transceiver. To reduce the power associated with the digital processor, data compression can reduce the volume of data transmitted. An adaptive data compression algorithm has been proposed to ensure accurate representations of critical epileptic signals, while also preserving the overall power. Further advances in power reduction are also presented by designing a custom baseband processor for data compression. A functional system has been hardware verified and ASIC optimized to reduce the power by over 9X compared to existing methods. The optimized processor can operate at 32MHz with a near threshold supply of 0.5V in a conventional 45nm technology. While attempting to reach high frequencies in the near threshold regime, the probability of timing violations can reduce the robustness of the system. To further optimize the implementation, a low voltage clock tree design has been investigated to improve the reliability of the digital processor. By implementing the proposed clock tree design methodology, the digital processor can improve its robustness (by reducing the probability of timing violations) while reducing the overall power by more than 5 percent. Future work suggests examining new architectures for low-throughput processing and investigating the proposed systems' potential for a multi-channel EEG implementation.
    URI
    http://hdl.handle.net/1853/45787
    Collections
    • Georgia Tech Theses and Dissertations [22398]
    • School of Electrical and Computer Engineering Theses and Dissertations [3127]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology

    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology