• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Beryllium-10 derived erosion rates from the Hangay Mountains, Mongolia: landscape evolution in a periglacially-dominated continental interior

    Thumbnail
    View/Open
    hopkins_chelsea_e_201212_mast.pdf (1.911Mb)
    Date
    2012-08-27
    Author
    Hopkins, Chelsea Elizabeth
    Metadata
    Show full item record
    Abstract
    Terrestrial cosmogenic nuclides such as beryllium-10 have recently been used as a way to determine basin-average erosion rates around the world. These erosion rates are useful to geomorphologists investigating landscape evolution. The Hangay Mountains in Mongolia are a prime location to use beryllium-10 because of the granitic rocks that provide the quartz needed for cosmogenic analysis as well as the lack of observed evidence of recent or old mass wasting events that mobilize sediment and bedrock with much lower cosmogenic concentrations that cause underestimations of erosion rates. Basin-average erosion rates observed in seven basins across the eastern Hangay Mountains range from 12 m/My to about 20 m/My. These are of similar magnitude to those found in tectonically inactive regions such as the southern Appalachians. Comparing basin-average erosion rates to basin parameters, whole basin relief had the highest calculated R2 value and elevation had the lowest P-value. No strong relationships were seen between erosion rate and mean slope angle, hypsometric integral, area, or mean local relief. The basin-average erosion rates observed in the Hangay were compared to previous studies by Ahnert (1970), Portenga and Biernman (2011), and Matmon et al. (2009). We found erosion rates from the Hangay to be much lower than expected in our analyses. The differences in erosion rates from the Hangay Mountains compared to other places around the world are likely due to the fact that the streams in the Hangay are eroding into alluvium as opposed to bedrock, and are located in a landscape dominanted by diffusive hillslope sediment transport mechanisms. The erosion rate is limited to the amount of sediment that can be transported by the streams.
    URI
    http://hdl.handle.net/1853/45799
    Collections
    • Georgia Tech Theses and Dissertations [23878]
    • School of Earth and Atmospheric Sciences Theses and Dissertations [543]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology