• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The development, characterization, and application of a biomimetic method of enzyme immobilization

    Thumbnail
    View/Open
    haase_nicholas_r_201212_phd.pdf (5.000Mb)
    Date
    2012-08-24
    Author
    Haase, Nicholas Rudy
    Metadata
    Show full item record
    Abstract
    This dissertation describes the characterization of layer-by-layer silica and titania coatings deposited using a protamine-induced method. It was found that silica coatings were thinner and more porous than titania coatings. These coatings were functionalized by immobilizing modified Glucose oxidase during the layer-by-layer buildup. The enzyme was found to retain higher activity in silica versus titania, with full retention of activity observed in one configuration. Immobilization in both materials resulted in enhanced thermal stability and proteolytic protection. The enzyme-functionalized coatings were then modified by the immobilization of silver nanoparticles to the exterior, and this biological/inorganic composite was tested for its antimicrobial activity against E. coli and S. aureus. Against E. coli the composite worked in a synergistic fashion, showing more potent antimicrobial activity when compared to either agent used alone. The enzyme modification method was then extended to Laccase, which was immobilized to carbon nanotubes and characterized as a biocathode. Modified laccase returned a nearly two-fold higher current density versus the native enzyme. Finally, synthetic peptides were tested for their ability to adsorb to silica and titanium-oxide surfaces and subsequently deposit titanium-oxide coatings, in an effort to better understand the structure-function relationships of mineralizing peptides.
    URI
    http://hdl.handle.net/1853/45802
    Collections
    • Georgia Tech Theses and Dissertations [22398]
    • School of Chemistry and Biochemistry Theses and Dissertations [1461]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology

    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology