• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Extension of neoclassical rotation theory for tokamaks to account for geometric expansion/compression of magnetic flux surfaces

    Thumbnail
    View/Open
    bae_cheonho_201212_phd.pdf (1.622Mb)
    Date
    2012-09-06
    Author
    Bae, Cheonho
    Metadata
    Show full item record
    Abstract
    An extended neoclassical rotation theory (poloidal and toroidal) is developed from the fluid moment equations, using the Braginskii decomposition of the viscosity tensor extended to generalized curvilinear geometry and a neoclassical calculation of the parallel viscosity coefficient interpolated over collision regimes. Important poloidal dependences of density and velocity are calculated using the Miller equilibrium flux surface geometry representation, which takes into account elongation, triangularity, flux surface compression/expansion and the Shafranov shift. The resulting set of eight (for a two-ion-species plasma model) coupled nonlinear equations for the flux surface averaged poloidal and toroidal rotation velocities and for the up-down and in-out density asymmetries for both ion species are solved numerically. The numerical solution methodology, a combination of nonlinear Successive Over-Relaxation(SOR) and Simulated Annealing(SA), is also discussed. Comparison of prediction with measured carbon poloidal and toroidal rotation velocities in a co-injected and a counter-injected H-mode discharges in DIII-D [J. Luxon, Nucl. Fusion 42, 614 (2002)] indicates agreement to within <10% except in the very edge in the co-injected discharge.
    URI
    http://hdl.handle.net/1853/45839
    Collections
    • Georgia Tech Theses and Dissertations [23878]
    • School of Mechanical Engineering Theses and Dissertations [4087]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology