• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Carbon nanotubes as structural templates within poly(vinyl alcohol) composite fibers

    Thumbnail
    View/Open
    Ford_Ericka_NJ_201212-PhD.pdf (8.360Mb)
    Date
    2012-11-12
    Author
    Ford, Ericka N. J.
    Metadata
    Show full item record
    Abstract
    Because the gel-spinning process has the potential to yield fibers of high strength and high modulus, this technique was employed to process continuous filaments of PVA/CNT, having CNTs at ¡Ü1 weight percent of polymer. A gel aging technique was employed with the goal of increasing the draw ratio for composite fibers and for promoting the development of crystalline PVA. Since residual solvent can lower the mechanical properties of drawn fibers, solvent phases of water and dimethyl sulfoxide (DMSO) within the drawn fibers were also characterized. As embedded SWNTs were uniaxially aligned along the drawn fiber axis, they were found to induce preferential alignment in the PVA side groups as well as for the residual solvent. This was attributed to charge transfer between SWNT and the respective functional groups. This orientation behavior has been characterized using Raman spectroscopy and infra-red dichroism. The behaviors of gel crystallization and solvent freezing within PVA/CNT dispersions were studied using thermal analysis and rheology. Carbon nanotubes were found to nucleate PVA crystallization in the gel state. PVA/CNT gel aging behavior was characterized by structural, thermal, and mechanical, and dynamic mechanical means. Gel aging was shown to increase the draw ratio of PVA/CNT fibers, and the development of the higher temperature melting peak was attributed to the draw induced ordering of PVA along CNTs. The scanning electron micrographs of fractured PVA/CNT fibers showed fibrils having an average diameter of about 22 nm. The storage modulus of aged gel was a function of solvent diffusion, which changed with aging time. CNTs were shown to have stabilized the gel network, as characterized by the dynamic mechanical properties, and to provide nucleation sites for the ordering of PVA chains, as characterized by WAXD.
    URI
    http://hdl.handle.net/1853/45921
    Collections
    • Georgia Tech Theses and Dissertations [22398]
    • School of Polymer, Textile and Fiber Engineering Theses and Dissertations [470]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology

    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology