Development of a multi-platform simulation for a pneumatically-actuated quadruped robot
Abstract
Successful development of mechatronic systems requires a combination of targeted hardware and software design. The compact rescue robot (CRR), a quadruped pneumatically-actuated walking robot that seeks to use the benefits garnered from pneumatic power, is a prime example of such a system. This thesis discusses the development and testing of a simulation that will aid in further design and development of the CRR by enabling users to examine the impacts of pneumatic actuation on a walking robot. However, development of an entirely new dynamic simulation specific to the system is not practical. Instead, the simulation combines a MATLAB/Simulink actuator simulation with a readily available C++ dynamics library. This multi-platform approach results in additional incurred challenges due to the transfer of data between the platforms. As a result, the system developed here is designed in the fashion that provides the best balance of realistic behavior, model integrity, and practicality. An analytically derived actuator model is developed using classical fluid circuit modeling together with nonlinear area and pressure curves to model the valve and a Stribeck-Tanh model to characterize the effects of friction on the cylinder. The valve model is designed in Simulink and validated on a single degree-of-freedom test rig. This actuator model is then interfaced with SrLib, a dynamics library that computes dynamics of the robot and interactions with the environment, and validated through comparisons with a CRR prototype. Conclusions are focused on the final composition of the simulation, its performance and limitations, and the benefits it offers to the system as a whole.
Collections
Related items
Showing items related by title, author, creator and subject.
-
Teaching robots about human environments: Leveraging human interaction to efficiently learn and use multisensory object affordances
Chu, Vivian (Georgia Institute of Technology, 2018-01-09)The real world is complex, unstructured, and contains high levels of uncertainty. Although past work shows that robots can successfully operate in situations where a single skill is needed, they will need a framework that ... -
Automatic coordination and deployment of multi-robot systems
Smith, Brian Stephen (Georgia Institute of Technology, 2009-03-31)We present automatic tools for configuring and deploying multi-robot networks of decentralized, mobile robots. These methods are tailored to the decentralized nature of the multi-robot network and the limited information ... -
Autonomous Mobile Robots for Personalized Caregiving
Kemp, Charles C. (Georgia Institute of Technology, 2014-08-12)Mobile robots with autonomous capabilities have the potential to provide 24/7 personalized care, dramatically improving the quality of life of people with motor impairments. I will first provide an overview of opportunities ...