Show simple item record

dc.contributor.authorDaepp, Hannes Gorkinen_US
dc.date.accessioned2013-01-17T22:04:29Z
dc.date.available2013-01-17T22:04:29Z
dc.date.issued2011-11-18en_US
dc.identifier.urihttp://hdl.handle.net/1853/45927
dc.description.abstractSuccessful development of mechatronic systems requires a combination of targeted hardware and software design. The compact rescue robot (CRR), a quadruped pneumatically-actuated walking robot that seeks to use the benefits garnered from pneumatic power, is a prime example of such a system. This thesis discusses the development and testing of a simulation that will aid in further design and development of the CRR by enabling users to examine the impacts of pneumatic actuation on a walking robot. However, development of an entirely new dynamic simulation specific to the system is not practical. Instead, the simulation combines a MATLAB/Simulink actuator simulation with a readily available C++ dynamics library. This multi-platform approach results in additional incurred challenges due to the transfer of data between the platforms. As a result, the system developed here is designed in the fashion that provides the best balance of realistic behavior, model integrity, and practicality. An analytically derived actuator model is developed using classical fluid circuit modeling together with nonlinear area and pressure curves to model the valve and a Stribeck-Tanh model to characterize the effects of friction on the cylinder. The valve model is designed in Simulink and validated on a single degree-of-freedom test rig. This actuator model is then interfaced with SrLib, a dynamics library that computes dynamics of the robot and interactions with the environment, and validated through comparisons with a CRR prototype. Conclusions are focused on the final composition of the simulation, its performance and limitations, and the benefits it offers to the system as a whole.en_US
dc.publisherGeorgia Institute of Technologyen_US
dc.subjectRescue roboten_US
dc.subjectWalking roboten_US
dc.subjectPneumaticsen_US
dc.subjectQuadruped roboten_US
dc.subjectSimulationen_US
dc.subjectNonlinear dynamic modelen_US
dc.subjectCylinder dynamicsen_US
dc.subjectFrictionen_US
dc.subjectValvesen_US
dc.subjectRoboticsen_US
dc.subjectFluid poweren_US
dc.subject.lcshAutomation
dc.subject.lcshRobots Control systems
dc.subject.lcshRobots Dynamics
dc.titleDevelopment of a multi-platform simulation for a pneumatically-actuated quadruped roboten_US
dc.typeThesisen_US
dc.description.degreeMSen_US
dc.contributor.departmentMechanical Engineeringen_US
dc.description.advisorCommittee Chair: Book, Wayne; Committee Member: Paredis, Christiaan; Committee Member: Ueda, Junen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record