• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Understanding the role topographical features play in stimulating the endogenous peripheral nerve regeneration across critically sized nerve gaps

    Thumbnail
    View/Open
    Mukhatyar_Vivek_J_201111_phd.pdf (6.214Mb)
    Date
    2011-11-11
    Author
    Mukhatyar, Vivek
    Metadata
    Show full item record
    Abstract
    Severe traumatic injuries and surgical procedures like tumor resection often create peripheral nerve gaps, accounting for over 250,000 injuries in the US annually. The clinical "gold standard" for bridging peripheral nerve gaps is autografts, with which 40-50% of patients regain useful function. However, issues including their limited availability and collateral damage at the donor site limit the effectiveness and use of autografts. Therefore, it is critical to develop alternative bioengineered approaches that match or exceed autograft performance. With the use of guidance channels, the endogenous regeneration process spontaneously occurs when successful bridging of short gaps (< 10mm) occurs, but fails to occur in the bridging of longer gaps (≥15mm). Several bioengineered strategies are currently being explored to bridge these critical size nerve gaps. Other labs and ours have shown how filler materials that provide topographical cues within the nerve guides are able to enhance nerve growth and bridge critical length gaps in rats. However, the mechanism by which intra-luminal fillers enhance nerve regeneration has not been explored. The main goal of this dissertation was to explore the interplay between intra-luminal scaffolds and orchestrated events of provisional fibrin matrix formation, glial cell infiltration, ECM deposition and remodeling, and axonal infiltration - a sequence we term the 'regenerative' sequence. We hypothesized that the mechanism by which thin films with topographical cues enhance regeneration is by serving as physical 'organizing templates' for Schwann cell infiltration, Schwann cell orientation, extra-cellular matrix deposition/organization and axon infiltration. We demonstrate that aligned topographical cues mediate their effects to the neuronal cells through optimizing fibronectin adsorption in vitro. We also demonstrate that aligned electrospun thin films are able to enhance bridging of a critical length nerve gap in vivo by stabilizing the provisional matrix, creating a pro-inflammatory environment and influencing the maturation of the regenerating cable leading to faster functional recovery compared to smooth films and random fibers. This research will advance our understanding of the mechanisms of peripheral nerve regeneration, and help develops technologies that are likely to improve clinical outcomes after peripheral nerve injury.
    URI
    http://hdl.handle.net/1853/45933
    Collections
    • Department of Biomedical Engineering Theses and Dissertations [509]
    • Georgia Tech Theses and Dissertations [22401]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology