• Login
    View Item 
    •   SMARTech Home
    • College of Engineering (CoE)
    • School of Civil and Environmental Engineering (CEE)
    • Georgia Water Resources Institute
    • Georgia Water Resources Institute Proceedings
    • 2011 Georgia Water Resources Conference
    • View Item
    •   SMARTech Home
    • College of Engineering (CoE)
    • School of Civil and Environmental Engineering (CEE)
    • Georgia Water Resources Institute
    • Georgia Water Resources Institute Proceedings
    • 2011 Georgia Water Resources Conference
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Coupling Tritium Release Data with Remotely Sensed Precipitation Data to Assess Model Uncertainties

    Thumbnail
    View/Open
    Poster7.01121Avant.pdf (204.6Kb)
    Date
    2011-04
    Author
    Avant, Brian K.
    Ignatius, Amber R.
    Rasmussen, Todd C.
    Grundstein, Andrew J.
    Mote, Thomas L.
    Shepherd, J. Marshall
    Metadata
    Show full item record
    Abstract
    An accidental tritium release (570 L, 210 TBq) from the K-Reactor at the Savannah River Site (South Carolina, USA) occurred between December 22- 25, 1991. Observed tritium concentrations in rivers and streams, as well as in the coastal estuary, are used to calibrate a hydrologic flow and transport model, BASINS 4.0 (Better Assessment Science Integrating Point and Non- Point Sources) environmental analysis system and the HSPF hydrologic model. The model is used to investigate complex hydrometeorological and source attribution problems. Both source and meteorologic input uncertainties are evaluated with respect to model predictions. Meteorological inputs include ground-based rain gauges supple-mented with and several NASA products including TRMM 3B42, TRMM 3B42RT, and MERRA (Modern Era Retrospective-Analysis for Research and Applications) reanalysis data. Model parameter uncertainties are evaluated using PEST (Model-Independent Parameter Estimation and Uncertainty Analysis) and coupled to meteorologic uncertainties to provide bounding estimates of model accuracy.
    URI
    http://hdl.handle.net/1853/46461
    Collections
    • 2011 Georgia Water Resources Conference [138]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology

    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology