• Login
    View Item 
    •   SMARTech Home
    • Center for Organic Photonics and Electronics (COPE)
    • COPE Publications
    • View Item
    •   SMARTech Home
    • Center for Organic Photonics and Electronics (COPE)
    • COPE Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Hybrid correlation models based on active-space partitioning: Seeking accurate O(N ⁵) ab initio methods for bond breaking

    Thumbnail
    View/Open
    COPE_38.pdf (452.5Kb)
    Date
    2006-08
    Author
    Bochevarov, Arteum D.
    Temelso, Berhane
    Sherrill, C. David
    Metadata
    Show full item record
    Abstract
    Møller-Plesset second-order (MP2) perturbation theory remains the least expensive standard ab initio method that includes electron correlation, scaling as O(N ⁵) with the number of molecular orbitals N. Unfortunately, when restricted Hartree-Fock orbitals are employed, the potential energy curves calculated with this method are of little use at large interatomic separations because of the divergent behavior of MP2 in these regions. In our previous study [J. Chem. Phys. 122, 234110 (2005)] we combined the MP2 method with the singles and doubles coupled cluster (CCSD) method to produce a hybrid method that retains the computational scaling of MP2 and improves dramatically the shape of the MP2 curves. In this work we expand the hybrid methodology to several other schemes. We investigate a new, improved MP2-CCSD method as well as a few other O(N ⁵) methods related to the Epstein-Nesbet pair correlation theory. Nonparallelity errors across the dissociation curve as well as several spectroscopic constants are computed for BH, HF, H₂O, CH+, CH₄, and Li₂ molecules with the 6-31G* basis set and compared with the corresponding full configuration interaction results. We show that among the O(N ⁵) methods considered, our new hybrid MP2-CCSD method is the most accurate and significantly outperforms MP2 not only at large interatomic separations, but also near equilibrium geometries.
    URI
    http://hdl.handle.net/1853/46622
    Collections
    • COPE Publications [376]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology