• Login
    View Item 
    •   SMARTech Home
    • Center for Organic Photonics and Electronics (COPE)
    • COPE Publications
    • View Item
    •   SMARTech Home
    • Center for Organic Photonics and Electronics (COPE)
    • COPE Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The X-1 Sigma(+)(g), B-1 Delta(g), and B ` (1)Sigma(+)(g) states of C-2: A comparison of renormalized coupled-cluster and multireference methods with full configuration interaction benchmarks

    Thumbnail
    View/Open
    COPE_058.pdf (518.9Kb)
    Date
    2005-03
    Author
    Sherrill, C. David
    Piecuch, Piotr
    Metadata
    Show full item record
    Abstract
    Unusual bonding and electronic near degeneracies make the lowest-lying singlet states of the C2 molecule particularly challenging for electronic structure theory. Here we compare two alternative approaches to modeling bond-breaking reactions and excited states: sophisticated multireference configuration interaction and multireference perturbation theory methods, and a more “black box,” single-reference approach, the completely renormalized coupled-cluster method. These approximate methods are assessed in light of their ability to reproduce the full configuration interaction potential energy curves for the X , B , and B′  states of C2, which are numerically exact solutions of the electronic Schrödinger equation within the space spanned by a 6-31G* basis set. Both the multireference methods and the completely renormalized coupled-cluster approach provide dramatic improvements over the standard single-reference methods. The multireference methods are nearly as reliable for this challenging test case as for simpler reactions which break only single bonds. The completely renormalized coupled-cluster approach has difficulty for large internuclear separations R in this case, but over the wide range of R = 1.0–2.0 Å, it compares favorably with the more complicated multireference methods
    URI
    http://hdl.handle.net/1853/46709
    Collections
    • COPE Publications [376]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology

    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology