• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Digital Signal Processing Methods for Source Function Extraction of Piezoelectric Elements

    Thumbnail
    View/Open
    kreuzinger_tobias_200412_mast.pdf (7.147Mb)
    Date
    2004-08-19
    Author
    Kreuzinger, Tobias
    Metadata
    Show full item record
    Abstract
    Guided wave techniques have great potential for the structural health monitoring of plate-like components. Previous research has demonstrated the effectiveness of combining laser-ultrasonic techniques with time-frequency representations to experimentally develop the dispersion relationship of a plate; the high fidelity, broad bandwidth and point-like nature of laser ultrasonics are critical for the success of these results. Unfortunately, laser ultrasonic techniques are time and cost intensive, and are impractical for many in-service applications. Therefore this research develops a complementary digital signal processing methodology that uses mounted piezoelectric elements instead of optical devices. This study first characterizes the spatial and temporal effects of oil coupled and glued piezoelectric sources, and then develops a procedure to interpret and model the distortion caused by their limited bandwidth and finite size. Furthermore, it outlines any inherent difficulties for time and frequency domain considerations. The deconvolution theory for source function extraction in the time - and frequency domain under the presence of noise is provided and applied to measured data. These considerations give the background for further studies to develop a dispersion relationship of a plate with the fidelity and bandwidth similar to results possible with laser ultrasonics, but made using mounted piezoelectric sources.
    URI
    http://hdl.handle.net/1853/4792
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Civil and Environmental Engineering Theses and Dissertations [1755]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology