• Login
    View Item 
    •   SMARTech Home
    • College of Engineering (CoE)
    • School of Civil and Environmental Engineering (CEE)
    • Georgia Water Resources Institute
    • Georgia Water Resources Institute Proceedings
    • 2007 Georgia Water Resources Conference
    • View Item
    •   SMARTech Home
    • College of Engineering (CoE)
    • School of Civil and Environmental Engineering (CEE)
    • Georgia Water Resources Institute
    • Georgia Water Resources Institute Proceedings
    • 2007 Georgia Water Resources Conference
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Analysis of Tracer Migration in a Diverging Radial Flow Field

    Thumbnail
    View/Open
    Seaman_7.4.2.pdf (212.5Kb)
    Date
    2007-03
    Author
    Seaman, John C.
    Majs, František
    Singer, Julian
    Aburime, Sunnie
    Dennis, S. O.
    Wilson, M.
    Bertsch, Paul M.
    Metadata
    Show full item record
    Abstract
    Hydrodynamic dispersion is an important factor controlling contaminant migration in the subsurface environment. However, few comprehensive data sets exist for critically evaluating the impact of travel distance and site heterogeneity on solute dispersion. Therefore, a series of field-scale experiments using tritiated water (³H₂O), and bromide (Br-) as tracers was conducted on the U.S. Department of Energy's Savannah River Site. For each experiment, tracer-free groundwater was injected at a fixed rate of 56.7 L min-1 to establish a forced radial gradient prior to the introduction of a tracer pulse. After the tracer pulse, the forced gradient was maintained throughout the experiment using non-labeled groundwater. Tracer migration was monitored using six sampling wells radially spaced at approximate distances of 2.0-, 3.0-, and 4.5-m from the injection well. Each sampling well was further divided into three discrete sampling depths that were pumped continuously throughout the course of the experiments. Longitudinal dispersivity (αL) and travel times for ³H₂O were estimated by fitting the field data to analytical approximations of the advection-dispersion equation (ADE) for uniform and radial flow. Dispersivity varied greatly between wells located at similar transport distances and between zones within a given well. The radial flow equation described ³H₂O breakthrough better than the uniform flow solution, yielding lower αL values while accounting for breakthrough tailing inherent to radial flow conditions. Temporal moment analysis confirmed the retardation of Br-, generally considered to travel in a conservative manner, despite data truncation due to extensive tailing that biased retardation estimates when compared to ³H₂O. Despite retardation and incomplete mass recovery, both ADE models were able to reasonably describe the Brdata without accounting for sorption reactions, indicating that chemical interactions with the geologic matrix may be misinterpreted in terms of a physical transport process.
    URI
    http://hdl.handle.net/1853/48239
    Collections
    • 2007 Georgia Water Resources Conference [140]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology