• Login
    View Item 
    •   SMARTech Home
    • College of Engineering (CoE)
    • School of Electrical and Computer Engineering (ECE)
    • Laboratory of Computational Computer Vision (LCCV)
    • Laboratory of Computational Computer Vision Publications
    • View Item
    •   SMARTech Home
    • College of Engineering (CoE)
    • School of Electrical and Computer Engineering (ECE)
    • Laboratory of Computational Computer Vision (LCCV)
    • Laboratory of Computational Computer Vision Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification

    Thumbnail
    View/Open
    tim_Implem_MumfordShah.pdf (839.7Kb)
    Date
    2001-08
    Author
    Tsai, Andy
    Yezzi, Anthony
    Willsky, Alan S.
    Metadata
    Show full item record
    Abstract
    In this work, we first address the problem of simultaneous image segmentation and smoothing by approaching the Mumford–Shah paradigm from a curve evolution perspective. In particular, we let a set of deformable contours define the boundaries between regions in an image where we model the data via piecewise smooth functions and employ a gradient flow to evolve these contours. Each gradient step involves solving an optimal estimation problem for the data within each region, connecting curve evolution and the Mumford–Shah functional with the theory of boundary-value stochastic processes. The resulting active contour model offers a tractable implementation of the original Mumford–Shah model (i.e., without resorting to elliptic approximations which have traditionally been favored for greater ease in implementation) to simultaneously segment and smoothly reconstruct the data within a given image in a coupled manner. Various implementations of this algorithm are introduced to increase its speed of convergence.We also outline a hierarchical implementation of this algorithm to handle important image features such as triple points and other multiple junctions. Next, by generalizing the data fidelity term of the original Mumford– Shah functional to incorporate a spatially varying penalty, we extend our method to problems in which data quality varies across the image and to images in which sets of pixel measurements are missing. This more general model leads us to a novel PDE-based approach for simultaneous image magnification, segmentation, and smoothing, thereby extending the traditional applications of the Mumford–Shah functional which only considers simultaneous segmentation and smoothing.
    URI
    http://hdl.handle.net/1853/48919
    Collections
    • Laboratory of Computational Computer Vision Publications [106]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology

    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology