• Login
    View Item 
    •   SMARTech Home
    • College of Engineering (CoE)
    • School of Electrical and Computer Engineering (ECE)
    • Laboratory of Computational Computer Vision (LCCV)
    • Laboratory of Computational Computer Vision Publications
    • View Item
    •   SMARTech Home
    • College of Engineering (CoE)
    • School of Electrical and Computer Engineering (ECE)
    • Laboratory of Computational Computer Vision (LCCV)
    • Laboratory of Computational Computer Vision Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A curve evolution approach to smoothing and segmentation using the Mumford-Shah functional

    Thumbnail
    View/Open
    tim_Stochastic_DEs.pdf (977.9Kb)
    Date
    2000-06
    Author
    Tsai, Andy
    Yezzi, Anthony
    Willsky, Alan S.
    Metadata
    Show full item record
    Abstract
    In this work, we approach the classic Mumford-Shah problem from a curve evolution perspective. In particular we let a given family of curves define the boundaries between regions in an image within which the data are modeled by piecewise smooth functions plus noise as in the standard Mumford-Shah functional. The gradient descent equation of this functional is then used to evolve the curve. Each gradient descent step involves solving a corresponding optimal estimation problem which connects the Mumford-Shah functional and our curve evolution implementation with the theory of boundary-value stochastic processes. The resulting active contour model, therefore, inherits the attractive ability of the Mumford-Shah technique to generate, in a coupled Mumford-Shah a smooth reconstruction of the image and a segmentation as well. We demonstrate applications of our method to problems in which data quality is spatially varying and to problems in which sets of pixel measurements are missing. Finally, we demonstrate a hierarchical implementation of our model which leads to a fast and efficient algorithm capable of dealing with important image features such as triple points.
    URI
    http://hdl.handle.net/1853/48925
    Collections
    • Laboratory of Computational Computer Vision Publications [106]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology

    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology