• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    New algorithms for solving inverse source problems in imaging techniques with applications in fluorescence tomography

    Thumbnail
    View/Open
    YIN-DISSERTATION-2013.pdf (2.037Mb)
    Date
    2013-05-15
    Author
    Yin, Ke
    Metadata
    Show full item record
    Abstract
    This thesis is devoted to solving the inverse source problem arising in image reconstruction problems. In general, the solution is non-unique and the problem is severely ill-posed. Therefore, small perturbations, such as the noise in the data, and the modeling error in the forward problem, will cause huge errors in the computations. In practice, the most widely used method to tackle the problem is based on Tikhonov-type regularizations, which minimizes a cost function combining a regularization term and a data fitting term. However, because the two tasks, namely regularization and data fitting, are coupled together in Tikhonov regularization, they are difficult to solve. It happens even if each task can be efficiently solved when they are separate. We propose a method to overcome the major difficulties, namely the non-uniqueness of the solution and noisy data fitting, separately. First we find a particular solution called the orthogonal solution that satisfies the data fitting term. Then we add to it a correction function in the kernel space so that the final solution fulfills the regularization and other physical requirements. The key idea is that the correction function in the kernel has no impact to the data fitting, and the regularization is imposed in a smaller space. Moreover, there is no parameter needed to balance the data fitting and regularization terms. As a case study, we apply the proposed method to Fluorescence Tomography (FT), an emerging imaging technique well known for its ill-posedness and low image resolution in existing reconstruction techniques. We demonstrate by theory and examples that the proposed algorithm can drastically improve the computation speed and the image resolution over existing methods.
    URI
    http://hdl.handle.net/1853/48945
    Collections
    • Georgia Tech Theses and Dissertations [23878]
    • School of Mathematics Theses and Dissertations [440]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology