• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Reconfigurable CMOS RF power amplifiers for advanced mobile terminals

    Thumbnail
    View/Open
    yoon_youngchang_201108_phd.pdf (3.568Mb)
    Date
    2012-09-21
    Author
    Yoon, Youngchang
    Metadata
    Show full item record
    Abstract
    In recent years, tremendous growth of the wireless market can be defined through the following words: smartphone and high-data rate wireless communication. This situation gives new challenges to RF power amplifier design, which includes high-efficiency, multi-band operation, and robustness to antenna mismatch conditions. In addition to these issues, the industry and consumers demand a low-cost small-sized wireless device. A fully integrated single-chip CMOS transceiver is the best solution in terms of cost and level of integration with other functional blocks. Therefore, the effective approaches in a CMOS process for the abovementioned hurdles are highly desirable. In this dissertation, the new challenges are overcome by introducing adaptability to a CMOS power amplifier. Meaningful achievements are summarized as follows. First, a new CMOS switched capacitor structure for high power applications is proposed. Second, a dual-mode CMOS PA with an integrated tunable matching network is proposed to extend battery lifetime. Third, a switchless dual-band matching structure is proposed, and the effectiveness of dual-band matching is demonstrated with a fully-integrated CMOS PA. Lastly, a reconfigurable CMOS PA with an automatic antenna mismatch recovery system is presented, which can maintain its original designed performance even under various antenna mismatch conditions. Conclusively, the research in this dissertation provides various solutions for new challenges of advanced mobile terminals.
    URI
    http://hdl.handle.net/1853/48987
    Collections
    • Georgia Tech Theses and Dissertations [22398]
    • School of Electrical and Computer Engineering Theses and Dissertations [3127]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology

    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology