• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Self-organized traffic flows: a sequential conflict resolution approach

    Thumbnail
    View/Open
    HAND-THESIS-2013.pdf (14.33Mb)
    AircraftFlowsOfArbitraryThickness.avi (4.705Mb)
    ClevelandTrajectories.avi (203.6Mb)
    HanoiTRACKING.wmv (311.8Mb)
    WeatherDemo.avi (3.747Mb)
    WeatherTrajectories.avi (11.75Mb)
    SimulinkDEMO.wmv (36.62Mb)
    Thesis Paper.zip (64.29Mb)
    Date
    2013-06-04
    Author
    Hand, Troy S.
    Metadata
    Show full item record
    Abstract
    This thesis discusses the effect of sequential conflict resolution maneuvers of a continuous flow of agents through a finite control volume. Video analysis of real world traffic flows that exhibit self-organized capabilities is conducted to extract characteristics of those agents. A tool is created which stabilizes the input video and extracts motion from it using the background subtraction method. I discuss the tool in detail as I created it to be user friendly and easily modifiable for other uses. The aim of the video analysis I conduct is to determine characteristics of agents in self-organized traffic flow. Comparisons are made with agents under sequential conflict resolution schemes and those that exhibit these self-organized capabilities to determine if agents under sequential control can approach the behaviors of those in self-organized environment. Flow geometries are studied and generalized with the goal of determining stability characteristics of arbitrary flow geometries. Stability analysis includes analytical proof of bounds on the conflict resolution maneuvers.
    URI
    http://hdl.handle.net/1853/49125
    Collections
    • Georgia Tech Theses and Dissertations [22398]
    • School of Aerospace Engineering Theses and Dissertations [1342]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology

    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology