• Login
    View Item 
    •   SMARTech Home
    • College of Engineering (CoE)
    • School of Electrical and Computer Engineering (ECE)
    • Laboratory of Computational Computer Vision (LCCV)
    • Laboratory of Computational Computer Vision Publications
    • View Item
    •   SMARTech Home
    • College of Engineering (CoE)
    • School of Electrical and Computer Engineering (ECE)
    • Laboratory of Computational Computer Vision (LCCV)
    • Laboratory of Computational Computer Vision Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stereoscopic Segmentation

    Thumbnail
    View/Open
    iccv_Stereoscopic_Segmentation.pdf (1.420Mb)
    Date
    2001-07
    Author
    Yezzi, Anthony
    Soatto, Stefano
    Metadata
    Show full item record
    Abstract
    We cast the problem of multiframe stereo reconstruction of a smooth shape as the global region segmentation of a collection of images of the scene. Dually, the problem of segmenting multiple calibrated images of an object becomes that of estimating the solid shape that gives rise to such images. We assume that the radiance has smooth statistics. This assumption covers Lambertian scenes with smooth or constant albedo as well as fine homogeneous textures, which are known challenges to stereo algorithms based on local correspondence. We pose the segmentation problem within a variational framework, and use fast level set methods to approximate the optimal solution numerically. Our algorithm does not work in the presence of strong textures, where traditional reconstruction algorithms do. It enjoys significant robustness to noise under the assumptions it is designed for.
    URI
    http://hdl.handle.net/1853/49147
    Collections
    • Laboratory of Computational Computer Vision Publications [106]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology

    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology