• Login
    View Item 
    •   SMARTech Home
    • College of Sciences (CoS)
    • School of Biological Sciences
    • School of Biology Faculty Publications
    • View Item
    •   SMARTech Home
    • College of Sciences (CoS)
    • School of Biological Sciences
    • School of Biology Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Identification of target genes of the homeotic gene Antennapedia by enhancer detection

    Thumbnail
    View/Open
    chlp_gibson_1991_001.pdf (12.42Mb)
    Date
    2003-08
    Author
    Wagner-Bernholz, Juliane T.
    Wilson, Clive
    Gibson, Greg
    Schuh, Reinhard
    Gehring, Walter J.
    Metadata
    Show full item record
    Abstract
    Localized expression of the homeotic gene Antennapedia (Antp) in Drosophila melanogaster is required for normal development of the thoracic segments. When the Antp gene is expressed ectopically in the larval primordium of the antenna, the antennal imaginal disc, the developmental fate of the disc is switched and the adult antenna is transformed to a mesothoracic leg. We screened approximately 550 different fly strains carrying single copies of an enhancer-detector transposon to identify regulatory elements and corresponding genes that are either activated or repressed in antennal discs in response to this transformation. Several regulatory elements that are either direct or indirect targets of Antp were found. One transposant that expresses the reporter gene (lacZ) in the antennal disc, but not in the leg disc, was studied in more detail. The enhancer detector in this strain is located near a similarly regulated gene at the spalt (sal) locus, which encodes a homeotic function involved in embryonic head and tail development. The expression of this newly discovered gene, spalt major (salm) is strongly repressed in gain-of-function mutants that express Antp in the antennal disc. Recessive loss-of-function mutations (Antp-) have the opposite developmental effect; they cause the differentiation of antennal structures in the second leg disc. Accordingly, salm is derepressed in clones of homozygous Antp- cells. Therefore, we conclude that Antp negatively regulates salm. The time course of the interaction and reporter gene fusion experiments suggests (but does not prove) a direct interaction between Antp and cis-regulatory elements of salm. Our analysis of several enhancer-detector strains suggests that the basic patterning information in the antennal and leg imaginal discs is very similar.
    URI
    http://hdl.handle.net/1853/49154
    Collections
    • School of Biology Faculty Publications [227]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology