• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Multivariate Quality Control Using Loss-Scaled Principal Components

    Thumbnail
    View/Open
    murphy_terrence_e_200412_phd.pdf (960.1Kb)
    Date
    2004-11-24
    Author
    Murphy, Terrence Edward
    Metadata
    Show full item record
    Abstract
    We consider a principal components based decomposition of the expected value of the multivariate quadratic loss function, i.e., MQL. The principal components are formed by scaling the original data by the contents of the loss constant matrix, which defines the economic penalty associated with specific variables being off their desired target values. We demonstrate the extent to which a subset of these ``loss-scaled principal components", i.e., LSPC, accounts for the two components of expected MQL, namely the trace-covariance term and the off-target vector product. We employ the LSPC to solve a robust design problem of full and reduced dimensionality with deterministic models that approximate the true solution and demonstrate comparable results in less computational time. We also employ the LSPC to construct a test statistic called loss-scaled T^2 for multivariate statistical process control. We show for one case how the proposed test statistic has faster detection than Hotelling's T^2 of shifts in location for variables with high weighting in the MQL. In addition we introduce a principal component based decomposition of Hotelling's T^2 to diagnose the variables responsible for driving the location and/or dispersion of a subgroup of multivariate observations out of statistical control. We demonstrate the accuracy of this diagnostic technique on a data set from the literature and show its potential for diagnosing the loss-scaled T^2 statistic as well.
    URI
    http://hdl.handle.net/1853/4916
    Collections
    • Georgia Tech Theses and Dissertations [22402]
    • School of Industrial and Systems Engineering Theses and Dissertations [1381]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology