• Login
    View Item 
    •   SMARTech Home
    • College of Computing (CoC)
    • School of Computational Science and Engineering (CSE)
    • School of Computational Science and Engineering Technical Reports
    • View Item
    •   SMARTech Home
    • College of Computing (CoC)
    • School of Computational Science and Engineering (CSE)
    • School of Computational Science and Engineering Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    PIVE: A Per-Iteration Visualization Environment for Supporting Real-time Interactions with Computational Methods

    Thumbnail
    View/Open
    GT-CSE-2013-06.pdf (1.780Mb)
    Date
    2013
    Author
    Choo, Jaegul
    Lee, Changhyun
    Park, Haesun
    Metadata
    Show full item record
    Abstract
    Visual analytics has been gaining increasing interest due to its fascinating characteristic that leverages both humans’ visual perception and the power of computing. Although various computational methods are being proposed, they do not properly support visual analytics. One of the biggest obstacles towards their real-time visual analytic integration is their high computational complexity. As a way to tackle this problem, this paper presents PIVE, a Per-Iteration Visualization Environment for supporting real-time interactive visualization with computational methods. The main idea behind PIVE is that most advanced computational methods work by refining the solution iteratively. By visually delivering the result from each iteration to users, the proposed framework enables users to quickly acquire the information that the computational method provides as well as the ability to perform continuous interactions with them in real time. We show the effectiveness of PIVE in terms of real-time visualization and interaction capabilities by customizing various dimension reduction methods such as principal component analysis, multidimensional scaling, and t-distributed stochastic neighborhood embedding, and clustering method s such as k-means and latent Dirichlet allocation.
    URI
    http://hdl.handle.net/1853/49250
    Collections
    • School of Computational Science and Engineering Technical Reports [37]
    • College of Computing Technical Reports [505]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology

    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology