Show simple item record

dc.contributor.authorJeram, Geoffrey James Josephen_US
dc.date.accessioned2005-03-01T21:24:06Z
dc.date.available2005-03-01T21:24:06Z
dc.date.issued2004-11-24en_US
dc.identifier.urihttp://hdl.handle.net/1853/4933
dc.description.abstractThis Open Platform for Limit Protection guides the open design of maneuver limit protection systems in general, and manned, rotorcraft, aerospace applications in particular. The platform uses three stages of limit protection modules: limit cue creation, limit cue arbitration, and control system interface. A common set of limit cue modules provides commands that can include constraints, alerts, transfer functions, and friction. An arbitration module selects the best limit protection cues and distributes them to the most appropriate control path interface. This platform adopts a holistic approach to limit protection whereby it considers all potential interface points, including the pilots visual, aural, and tactile displays; and automatic command restraint shaping for autonomous limit protection. For each functional module, this thesis guides the control system designer through the design choices and information interfaces among the modules. Limit cue module design choices include type of prediction, prediction mechanism, method of critical control calculation, and type of limit cue. Special consideration is given to the nature of the limit, particularly the level of knowledge about it, and the ramifications for limit protection design, especially with respect to intelligent control methods such as fuzzy inference systems and neural networks. The Open Platform for Limit Protection reduces the effort required for initial limit protection design by defining a practical structure that still allows considerable design freedom. The platform reduces lifecycle effort through its open engineering systems approach of decoupled, modular design and standardized information interfaces. Using the Open Platform for Limit Protection, a carefree maneuver system is designed that addresses: main rotor blade stall as a steady-state limit; hub moment as a transient structural limit; and pilot induced oscillation as a controllability limit. The limit cue modules in this system make use of static neural networks, adaptive neural networks, and fuzzy inference systems to predict these limits. Visual (heads up display) and tactile (force-feedback) limit cues are employed. The carefree maneuver system is demonstrated in manned simulation using a General Helicopter (GENHEL) math model of the UH-60 Black Hawk, a projected, 53 degree field of view for the pilot, and a two-axis, active sidestick for cyclic control.en_US
dc.format.extent7882589 bytes
dc.format.extent42724352 bytes
dc.format.extent21395968 bytes
dc.format.extent18406400 bytes
dc.format.extent32551936 bytes
dc.format.extent7967744 bytes
dc.format.extent315858 bytes
dc.format.extent290775333 bytes
dc.format.extent4392190 bytes
dc.format.mimetypevideo/quicktime
dc.format.mimetypeapplication/octet-stream
dc.format.mimetypeapplication/octet-stream
dc.format.mimetypeapplication/octet-stream
dc.format.mimetypeapplication/octet-stream
dc.format.mimetypeapplication/octet-stream
dc.format.mimetypevideo/mpeg
dc.format.mimetypevideo/quicktime
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherGeorgia Institute of Technologyen_US
dc.subjectDigitalen_US
dc.subjectControl
dc.subjectObject
dc.subjectOpen
dc.subjectFuzzy
dc.subjectNeural
dc.subjectHaptic
dc.subjectAlert
dc.subjectLimit
dc.subjectCockpit
dc.subject.lcshNeural networks (Computer science)en_US
dc.subject.lcshFlight control Design and constructionen_US
dc.subject.lcshFuzzy systemsen_US
dc.subject.lcshHelicopters Control systems Design and constructionen_US
dc.subject.lcshIntelligent control systemsen_US
dc.titleOpen Platform for Limit Protection with Carefree Maneuver Applicationsen_US
dc.typeDissertationen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentAerospace Engineeringen_US
dc.description.advisorCommittee Chair: Dr. J.V.R. Prasad; Committee Member: Dr. Amy Pritchett; Committee Member: Dr. Daniel Schrage; Committee Member: Dr. Eric Johnson; Committee Member: Dr. Joseph Horn; Committee Member: Dr. William Lewisen_US


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record