• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Automated Extraction of Subdural Grid Electrodes from Post-Implant MRI Scans for Epilepsy Surgery

    Thumbnail
    View/Open
    pozdin_maksym_o_200408_mast.pdf (1.548Mb)
    Date
    2004-05-13
    Author
    Pozdin, Maksym O.
    Metadata
    Show full item record
    Abstract
    The objective of the current research was to develop an automated algorithm with no or little user assistance for extraction of Subdural Grid Electrodes (SGE) from post-implant MRI scans for epilepsy surgery. The algorithm utilizes the knowledge about the artifacts created by Subdural Electrodes (SE) in MRI scans. Also the algorithm does not only extract individual electrodes, but it also extracts them as a SGE structures. Information about the number and type of implanted electrodes is recorded during the surgery [1]. This information is used to reduce the search space and produce better results. Currently, the extraction of SGE from post-implant MRI scans is performed manually by a technologist [1, 2, 3]. It is a time-consuming process, requiring on average a few hours, depending on the number of implanted SE. In addition, the process does not conserve the geometry of the structures, since electrodes are identified individually. Usually SGE extraction is complicated by nearby artifacts, making manual extraction a non-trivial task that requires a good visualization of 3D space and orientation of SGE in it. Currently, most of the technologists use 2D slice viewers for extraction of SGE from 3D MRI scans. There is no commercial software to perform the automated extraction task. The only algorithm suggested in the literature is [4]. The goal of the proposed algorithm is to improve the performance of the algorithm in [4]. As a goal, the proposed algorithm performs extraction of SGE not only for individual electrodes, but by applying geometric constraints on SGE.
    URI
    http://hdl.handle.net/1853/4979
    Collections
    • Georgia Tech Theses and Dissertations [23403]
    • School of Electrical and Computer Engineering Theses and Dissertations [3303]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology